
SMOCK LOCK: A Smart and
Secure Lock

Kenneth McDonald, Matthew Navarro,
Eric Sayegh, and Gabriel Couto

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,

32816-2450

Abstract — This paper will conceptualize the

implementation and design that was used for the SMOCK
Lock. The SMOCK Lock is a smart lock that is capable of
providing a variety of different security features. The most
impressive security feature being Facial Detection and
Recognition. This will allow the lock to recognize who is at
the door after comparing the picture with our database.
Other security features that the SMOCK Lock provides are
Fingerprint Scanning, secure E-Key distribution, a secure
Authorized User invitation (which allows the user to unlock
the door with their Fingerprint or Face.)

Index Terms — Facial Detection, Facial Recognition, E-
Key, Fingerprint Scanning, Authorized User

I. INTRODUCTION

Over the course of this Senior Design semester, our
goal has been to officially create a working and
functioning SMOCK Lock, that is capable of running
Facial Recognition, Fingerprint Scanning/Comparison,
operating in a Low Power mode unless the PIR Sensor
detects motion, and OLED Display that will display
instructions to the user of the lock if necessary. Our Lock
will also use an E-Key to allow keys to be distributed to
guests for a limited amount of time and would then delete
itself from the database. All of our components will be
able to talk to each other if necessary and will use API’s
and Serial Communication to do so. Our Mobile
Application will be available for both Android and iOS.
With the Mobile Application users and owners will be
able to unlock and lock the door if they have been granted
Authorized User Privileges. The owner could also choose
to not add anyone as an Authorized User, and they would
not be able to unlock the door. This lock would allow you
to distribute E-Keys to guests, like a babysitter, or a
contractor that is coming to work on your home while
you’re not there. Its possible to use this app from
anywhere, if the lock has been properly setup and is able
to maintain connection to the Wi-Fi.

II. SYSTEM COMPONENTS

In this section we will introduce the main components
to the system and their features.

A. Microcontroller

At the core of our project, we have the Microchip
ATmega328p single chip microcontroller (MCU) from
the megaAVR family. The ATmega328p was chosen due
its powerful single clock cycle execution of 131
instructions, its 23 I/O pins, its low price and large
amount of open-source support. Since the ATmega328p
achieves throughputs close to 1MIPS per MHz due to its
powerful instructions in a single clock cycle, we can
optimize the chip’s power consumption over processing
speed. The Arduino IDE is used for programming and
debugging of the chip.

B. Wi-Fi Module

To connect our system to the internet, we have selected
the ESP8266 Wi-Fi microchip by Espressif Systems. This
chip was selected due to its small size, low price, and low
power consumption. The ESP8266 supports 2.4GHz Wi-
Fi using the 802.11 b/g/n standard along with the
WPA/WPA2 security protocol. The microchip can
communicate with other chips through UART and
supports HTTP requests to and from the server.

C. Camera

To capture images of users at the door, we have
selected the OV2640 camera sensor. The OV2640 sensor
provides full functionality of a single-chip UXGA camera
and image processor while maintain a small footprint
package. It has an array size of 1600 x 1200 and supports
image sizes of UXGA, SXGA, SVGA and any size
scaling down from SXGA to 40x30. The OV2640 also
supports automatic image control functions such as
Automatic Exposure Control, Automatic Gain Control,
and Automatic Black-Level Calibration. We make use of
the ESP32-CAM module, which uses the OV2640, to
process images and upload them to the database.

D. Fingerprint Sensor

To obtain the fingerprint of user at the door, we have
selected the AS608 Optical fingerprint sensor. The AS608
sensor uses a high-powered DSP chip for image rendering
and can connect to any microcontroller through UART.
The sensor has a storage capacity of 240 prints, a false
acceptance rate less than 0.001%, a refusal rate less than
1.0%, and a search time less than 220 ms.

E. PIR Sensor

To determine when someone is at the door and to
switch out of low-power mode, we have selected the HC-
SR501 PIR sensor module. The PIR sensor has an
adjustable delay time of 0.3 to 200 seconds, an adjustable
range of 3 meters to 7 meters, and a block time of 2.5
seconds. When the sensor detects motion, it sends a
HIGH signal to the microcontroller that triggers it to
wake.

F. Display

To display instructions to users, we have selected a .91-
inch OLED display. The display has a response time of
about 0.01 ms and a resolution of 128x32 where every
pixel can be illuminated Since the display is self-
illuminated, there is no need to power a backlight which
allows for low power consumption. Despite its smaller
size, the display supports scrolling text which can be
utilized to display instructions to the user without the
limitation of how long the instruction is. The display
communicates with the microcontroller through I2C.

G. RFID

For users to make use of a RFID card or keychain, we
have selected the RC522 RFID reader. The reader
operates at 13.56 MHz and has a max read range of 6 cm.
The reader has a maximum data rate of 10 Mbps and
communicates with the microcontroller through the SPI
interface.

H. Locking Mechanism

The locking mechanism we have decided to go with is a
small size electric solenoid lock. The lock is latched style
and opens when power is supplied. When no power is
supplied, the lock remains closed. The lock is activated
when the microcontroller sends a HIGH signal to a relay
which in turns provides power to the lock.

III. SYSTEM CONCEPT

In order to best show how the system works in its
completeness, flowcharts are provided for visualization.

The system can be broken into two modes operation,
normal and setup, after powering on and initializing for
the first time. After the system powers on and initializes
for the first time, it remains in sleep. The system will
remain in sleep unless it is triggered by the PIR sensor, or
if a request was sent from the app. When the system is
triggered by the PIR sensor, the system is in normal
operation. When the system is triggered from the app
request, the system is in setup operation.

Fig. 1. Flowchart of MCU under normal operation

Figure 1 shows the flow of the system during normal
operation. Once the system is triggered from the PIR
sensor, the MCU is awoken from sleep and sends a
request to the camera module.

Figure 3 shows the flow of the camera module. Once
the camera module receives the signal from the MCU the
module will go into full power mode and begin the
process. First of which is to connect to the network of the
lock and send an error to the MCU if the process fails.
Once connected to the network the camera takes a picture
and checks if a face was detected. If a face wasn’t found
then a signal will be sent to the MCU to display a warning
to the user on the display to move into the camera’s view.
This will allow for 5 failed attempts before a general error
is sent and the verification will begin again from the start.
If a face is found in the picture, then the module will
perform a HTTP post request to send the base64 encoded
picture to the database to be processed. Once the HTTP
request is complete a success will be sent to the display
that the picture will be processed. After which the module
calls the facial recognition API with a HTTP post request
which will return the response in the payload which is
either the uniqueID of the user detected or a NULL value
to indicate the face in the picture was not authorized for

entry. Any error from the recognition or a fatal error on
the module side will be sent to the MCU to be shown to
the user on the display. If no errors were sent, the
uniqueID will be sent to the MCU to be stored in the
security array or if a NULL is sent the MCU will deny
access to the user.

After the uniqueID from the camera module is stored in
the security check array, the MCU will then ask the user
to place their fingerprint on the sensor. If the finger is
enrolled, the sensor will send back the fingerID associated
with the user’s fingerprint. The sensor will only return the
fingerID when it has a confidence value over 100. If the
fingerID is not found or is not confident, the sensor will
ask the user to try again 2 more times. If the fingerID is
not found the third time, the system will tell the user that
access is denied and return to sleep. If the fingerID is
found, it is then sent to the Wi-Fi module. The Wi-Fi
module makes an HTTP request to compare the user’s
fingerID to stored fingerID’s associated with the lock in
the database. If a match is not found, an error is returned
to the Wi-Fi module which is returned to the MCU which
will alert the user that access is denied and will go to
sleep. If a match is found, the uniqueID corresponding to
the user’s fingerID will be returned and the Wi-Fi module
will send it back to the MCU to store in the security check
array.

The MCU will then ask the user for their RFID card or
key. The user will hold their card or key up to the reader.
If the rfidID could not be read from the card, the system
will give the user two more tries. If the third time fails,
the system will alert the user access denied and will return
to sleep. If the rfidID is found from the card or key, the
MCU will send the rfidID to the Wi-Fi module. The Wi-
Fi module will make an HTTP request to compare the
rfidID to other rfidID’s associated with the lock in the
database. If a match is not found, an error is returned to
the Wi-Fi module which is returned to the MCU which
will alert the user that access is denied and will go to
sleep. If a match is found, the uniqueID corresponding to
the user’s fingerID will be returned and the Wi-Fi module
will send it back to the MCU to store in the security check
array.

The system will then loop through the security check
array to see if all the uniqueID’s stored in the array match.
If so, the system will alert the user that access has been
granted and will send a signal to the lock relay to provide
power to the lock. After 10 seconds, power will be
removed from the lock and the system will go back to
sleep If they do not all match, the user will be alerted that

access is denied and the system will go back to sleep.

Fig. 2. Flowchart of MCU during setup operation

Fig. 3. Flowchart of camera module

Figure 2 shows the flow of the system during setup
operation. After the MCU wakes from the trigger signal
sent from the Wi-Fi module when the app makes a request
the MCU grabs the request and parses it into function and
the values passed to the function. If the function name is
found to be enrollFinger, the MCU calls the enrollFinger
function and passes it the fingerID value that the new
fingerprint will be associated with. If the enrollment was a
success, the MCU will return a success message to the
Wi-Fi module and return to sleep. If the enrollment failed,
the MCU will return a error message and return to sleep.
If the function name is found to be enrollRFID, the MCU
calls the enrollRFID function where the reader will scan
the new rfid card or key and will send the rfidID back to
the Wi-Fi module and return to sleep. If the RFID
enrollment fails, an error message will be sent back and
the MCU returns to sleep. If the function is not found to

be enrollFinger or enrollRFID, an error message is sent
back to the Wi-Fi module and the MCU returns to sleep.

Fig. 4. Flowchart of Wi-Fi module

Figure 4 shows the flow of the Wi-Fi module. As said
previously, the Wi-Fi module checks to see if a request is
made from the app. If a request is found, the request is
sent to the MCU where it will handle the request under
setup operation. If no request is found, the Wi-Fi module
checks to see if the MCU is sending a request. If a request
from the MCU is found, the Wi-Fi module parses the
message into function and values and calls the matching
function. If a function isn’t matched an error is returned.
The Wi-Fi module returns the response from the function
to the MCU. Once completed the Wi-Fi module restarts
the loop.

IV. SOFTWARE DESIGN

In this section we will discuss the main aspects of the
project in terms of software.

A. Facial Recognition Algorithm

Our Facial recognition Algorithm start off by being
called by an API from the Camera Module after a picture
with a face has been detected. Once the picture is stored
within the database the picture is then decrypted from its
base64 form to be processed by the algorithm. The first

step is to create different versions of the picture one to
RGB and the other to Greyscale. The greyscale image is
immediately used to locate the face in the image and draw
a rectangle around it. This is achieved through the use of a
cascade classifier that determines through its previous
training on a dataset called “cv2.data.haarcascades” where
the faces are located in the picture. Next the RGB file is
used to create an encoding of the image. This encoding is
essentially a series of measurements taken from the face
that the algorithm deems noteworthy, the measurements
may be arbitrary but for every image these values will be
measured the same to allow for easy comparison. Our
facial recognition specifically uses the dlib’s deep
learning algorithm library to create the encodings for user
images and images that need to be processed directly
from the camera module. The specific algorithm being
used is a HOG+SVM method which employs a Linear
Support Vector Machine to train the recognition using
low level histograms to determine where points of interest
are for the encodings. This method is not only extremely
fast and versatile but far less dependent on expensive
hardware like its counterpart MMOD. The HOG+SVM
method is written in C++ but easily bound to a python
script, which is how we are calling the facial recognition
Next the algorithm compares the newly encoded values
from the camera module’s image to each of the saved user
encodings in the database and stores these comparisons in
a matches array. For the final comparison Euclidian
distance is used to determine if any of the faces match, if
none match a error value is sent. If a face does match,
then the users uniqueID is sent back through the API as a
payload response to the camera module which is then sent
to the MCU through UART communication to be stored
in the security array.

B. Server

For our Server Framework we decided to use
Express.js. which is a minimal and flexible Node.js web
application framework that provides a complex yet easy
to use set of features for web and mobile applications.
The server host we went with is Heroku, which is a cloud-
based hosting platform. It can be utilized to build, deliver,
and deploy our app.

C. Database

In this section we will discuss the database chosen and
how it is implemented. For our central database we chose
to use MongoDB a NoSQL DB system that supports both
JSON and BSON data formats allowing for integration
from multiple data sources. For the project we use the

database system to store almost all the project’s data, so
nothing is locally saved for security purposes in case the
locks inner electronics are breached. All sensitive data
stored in the database is also encrypted using BCrypt for
user data and Base64encoding for user pictures.

Fig. 5. ERD Diagram

D. APIs

In this section we will discuss how API’s work and the
way we will implement API into the development of our
Lock. API stands for application programming interface,
which serves as a connection between our Server and
Database. Since we are using Express.js as our server
framework, we can write our API with Node.js. With
Node.js, we can create REST APIs that will communicate
with the server and run essential operations for our
SMOCK Lock. There are four main HTTP methods that
we will implement, those being GET, POST, DELETE,
and PUT. With this, we will be able to read, create,
update, and delete resources inside our database. Those
HTTP methods will be essential to create accounts, login,
update, and delete.

V. MOBILE APPLICATION

The mobile application is designed to allow users of the
SMOCK lock to interact and configure their locks. The
mobile application contains multiple features that can be
setup and configured such as facial recognition,
fingerprint recognition, RFID, Authorized Users, and e-
keys. The app is designed to interact with our API library

to allow for communication of data between the mobile
application, server, database, and lock. The software
development kit Flutter is used to develop the app

Fig.6. Non-Admin Use Case Diagram

A. Registering an Account

During the registration process, the user is asked to
input a username, password, email, first name, and last
name. The frontend will capture the text and make a call
to the register API. If register is a success, the app will
automatically make a call to the login API with the
credentials that were inputted on the register screen.

B. Login

Login is conducted simply by grabbing the username
and password and making a call to the login API. If
successful, a jwt token should be returned to the
application which is an encrypted token that contains a
userid, firstname, lastname, email, array of locks the user
has access to as well as the corresponding permissions
level, and expiration date of the token. The jwt token
needs to be passed to any API calls to prove that the user
making the calls are logged in.

C. Authorized Users

A user who has ownership of a lock and has linked the
lock to their account will be able to add authorized users
to their lock. Owners will be able to generate a referral

code for their account that they can give to others so they
can sign up as an authorized user for the owner’s lock.
The owner will be able to add, remove, or edit authorized
users at any time. An authorized user will be able to
access the owners lock with their own biometrics stored
on their account. This makes it possible for a user account
to have access to multiple locks at once. For example,
user 1 can be an owner of lock 1, and an authorized user
to lock 2. Thus, the app is designed to allow for users to
switch between the lock they are currently interacting
with.

Fig. 7. Admin Use Case Diagram

D. Home Screen

Once logged in, a user will be brought to one of three
possible home screens depending on if a user has access
to a lock and what level of access the user has to the lock.

If a user has access to no lock, the user will be brought
to a screen that asks the user if they would like to input a
referral code to join another owner’s lock or if they would
like to add their own lock. Else if a user has access to a
lock as an authorized user only, they will be brought to a
limited home page that excludes the options to manage
ekeys and authorized users for that lock. Finally, if a user
has access to a lock as an owner. They will be brought to
a home page that includes the options to manage ekeys
and authorized users.

If the user has multiple locks attached to their account,
there is a dropdown menu that will allow the user to
switch the lock the user is currently interacting with.

E. Initial Lock Setup

The initial lock setup will allow the user to link a lock
to their account. First the user will be asked to input the
mac address of the lock. Once inputted, a popup will ask
the user to navigate to their phones Wi-Fi settings to
connect to the locks access point. Once connected, a
webpage will popup that will ask the user to input their
credentials for their Wi-Fi network. This will store it in
the lock to allow it to connect to Wi-Fi. The locks mac
address and ip address are stored in the database for future
use.

D. Configure Facial Recognition

Configure facial recognition will prompt the user to
take a picture of their face. This will be sent to the
database and added to an encoding that is used for the
facial recognition process.

E. Configure Fingerprint

Configure fingerprint allows the user to enroll a
fingerprint. The user has to ensure the lock and device
they are using are connected to the same network. The
fingerprints are stored on the lock and the database to
allow for comparisons to be done while the lock is offline.

F. EKeys

The mobile application also provided the ability for
owners to create digital ekeys. These can be sent to guest
that allow for a limited interaction with the owners lock
without the need for creating an account. On the
introduction screen of the app, an option to input an ekey
is shown. If a valid ekey is submitted. The user will be
brought to a screen that provides limited interaction with
the owners lock specifically designed for ekeys. The
screen will display the expiration date of the keys access,
as well as the status of the lock, and the ability to unlock
the lock from the app.

VII. CONCLUSION

This two-semester project provides our group with
valuable experience regarding professional meetings, the
process of working in a group, and how to produce
professional documents and a product.

Discussing issues and ideas through meetings has
allowed our group to understand how projects are
conducted in real world job scenarios. It has shown us
how important it is to make your voice heard when you
have a problem or an idea as staying silent can lead to
delays or a good idea being completely wasted.

We have also learned how important it is to assign roles
to each member so that they have their specific tasks.
Without this type of organization, a project can easily fall
apart due to lack of coordination or overworking one
person and underworking another.

The experience gained from this project has given us a
good idea of what to expect moving forward after college
and how to take what we have learned from classes and
apply to real world scenarios.

VIII. BIOGRAPHY

Kenneth McDonald is a 21-year-old
graduating Computer Engineering
student who is continuing his education
at UCF towards a master’s in Electrical
Engineering specializing in Signal
Processing and Systems.

 Matthew Navarro is a 21-year-old
graduating in Spring 2022, with a B.S.
in Computer Engineering, who is
continuing his education at UCF
towards a master’s in Electrical
Engineering. He is also currently
interning at Lockheed Martin.

 Eric Sayegh is a 22-year-old
graduating in Spring 2022, with a B.S.
in Computer Engineering, and is
looking to start a career in software
engineering.

Gabriel Couto is a 21-year-old
graduating in Spring 2022, with a B.S.
in Computer Engineering, currently
looking to start a career in the
enterprise computing field.

IX. ACKNOWLEDGEMENT

The authors wish to acknowledge the assistance and
support of Dr. Wei.

X. REFERENCES

[1] Microchip Technologies, “ATmega328P Datasheet,”
https://ww1.microchip.com/downloads/en/DeviceDoc/Atm
el-7810-Automotive-Microcontrollers-
ATmega328P_Datasheet.pdf, [Accessed 03-Apr-2022].

[2] Espressif Systems, “ESP8266EX Datasheet,”
https://www.espressif.com/sites/default/files/documentatio
n/0a-esp8266ex_datasheet_en.pdf, [Accessed 03-Apr-
2022]

[3] OmniVision Technologies, “OV2640 Datasheet,”
https://www.uctronics.com/download/cam_module/OV26
40DS.pdf, [Accessed 03-Apr-2022]

[4] NXP Semiconductors, “MFRC522 Datasheet,”
https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf,
[Accessed 03-Apr-2022]

[5] “HC-SR501 PIR Motion Detector Datasheet”,
https://www.mpja.com/download/31227sc.pdf, [Accessed
03-Apr-2022]

